A 3-note chord that has a strongly isographic Klumpenhouwer Network with the chord composed of the resulting 3 difference tones.

Defining a frequency transposition T_N as $F_1 * N = F_2$

and a frequency inversion I_N as $F_1 * F_2 = N$

The 3-note chord with sounding tones (ST) in Hz:

 $ST_1 = 100$

$$ST_2 = 100 + \frac{1}{3}\sqrt[3]{13500000 - 1500000\sqrt{69}} + 50\left(\frac{2}{3}\right)^{2/3}\sqrt[3]{9 + \sqrt{69}}$$

$$ST_{3} = \frac{50}{9} \left(30 + 3 \times 2^{2/3} \sqrt[3]{3(9 - \sqrt{69})} + \sqrt[3]{2} \left(3(9 - \sqrt{69}) \right)^{2/3} + 3 \times 2^{2/3} \sqrt[3]{3(9 + \sqrt{69})} + \sqrt[3]{2} \left(3(9 + \sqrt{69}) \right)^{2/3} \right)$$

produces 3 difference tones (*DT*):

The 3 sounding tones and the 3 difference tones will have strongly isographic Klumpenhouwer Networks with the following graphs:

The exact values of DT_1 , DT_2 , & DT_3 , and A, B & C can be determined from the exact values of the *ST*'s written above, but the approximate values are:

ST_1	=	100 Hz
ST_2	=	~232.47 Hz
ST_3	=	~407.96 Hz
DT_1	=	~132.47 Hz
DT_2	=	~175.49 Hz
DT_3^2	=	~307.96 Hz
А	=	~23247.2
В	=	~1.75
С	=	~40796.0